ON THE THEORY OF PRACTICAL STABILITY

PMM Vol. 43, No. 5, 1979, pp. 806-816
R. Z. ABDULLIN and L. Iu. ANAPOL'SKII

(Irkutsk)
(Received July 17, 1978)
Certain dynamic properties of a process system are introduced, generalizing for differential and difference equations the majority of the known concepts (see $[1-8]$, for example) in the theory of practical stability, such as: (A, λ, $\left.t_{0}, T\right)$, viz., Chetaev stability [1], the practical stability of LaSalle and Lefschetz [3], quasicontractive and contractive stability under perturbations [4], terminal and semiterminal stability [7], and a number of others. Theorems covering many of the known stability tests (for example, total practical stability [5], practical stability with prescribed settling time [6], and some others) are obtained for a process system (") with the aid of the comparison principle [9,10]. Effectively verifiable cases of application of these theorems are selected. An example is presented.

1. Theorems onestimates for a process system. For a process system S.with set T that is some subset of the real line R^{1} with a natural order relation inherited from R^{1}, we consider the dynamic properties expressed by the formulas

$$
\begin{align*}
& \mathrm{P}_{1^{\circ}} \equiv\left\{W_{1}\left[W_{2} R_{1} \wedge\left(\forall \Delta \in a\left(t_{0}\right)\right)(V t \in \Delta) R_{2}\right]\right\} \tag{1.1}\\
& \mathrm{P}_{2^{\circ}} \equiv\left\{W_{1}\left[W_{2} R_{1} \wedge\left(\Im \Delta \in a\left(t_{0}\right)\right)(\forall t \in \Delta) R_{2}\right]\right\} \\
& \mathrm{P}_{3^{\circ}} \equiv\left\{W_{1}\left[W_{2} R_{1} \wedge\left(今 a_{\mu}\left(t_{0}\right)\right)\left(\forall \Delta \in a_{\mu}\left(t_{0}\right)\right)(\forall t \in \Delta) R_{2}\right]\right\} \\
& W_{1} \equiv\left(\forall t_{0} \in T^{\circ}\right)\left(\forall h_{t_{0}} \in P_{t_{0}}\right)(\forall x \in r h), \\
& W_{2} \equiv\left(\forall t \in T_{t_{0}}(x, h)\right), R_{1} \equiv x(t, h) \in P^{t} \\
& R_{2} \equiv x(t, h) \in P_{f}^{t}, x(\cdot, h) \equiv x \\
& H=\left\{h=\left(t_{0}, h_{t_{0}}\right): t_{0} \in T^{\circ}, h_{t_{0}} \in H_{t_{0}}\right\}
\end{align*}
$$

Here $P, P_{f} \in \Xi$ and $P^{\circ} \in H$ are certain fixed subset of sets Ξ and H, such that ($\forall t \in T$) (respectively, $\left(\forall t_{0} \in T^{\circ}\right)$) their sections P^{t}, P_{f}^{t} (respectively, $P_{t_{0}}{ }^{\circ}$) by the hyperplane t (respectively, t_{0}) are not empty; $a\left(t_{0}\right)$ is a set of fixed intervals $\Delta \subseteq T_{t_{0}}$ of form $\left[t_{-}, t^{-}\right), t_{-} \in T_{t_{0}} \equiv\left\{t \in T: t_{0} \leqslant t\right\}$

[^0](in the case of degenerate intervals Δ we take $\Delta==\left\{t_{-}\right\}$); $a_{\mu}\left(t_{0}\right)$ is the set of nonintersecting intervals $\Delta=\left[t_{-}, t^{-}\right) \subseteq T_{t_{0}}$ whose measure mes $\Delta \geqslant \mu$ or mes $\Delta \leqslant \mu(\mu=$ const $>0)$ (the intervals $\Delta \in a_{\mu}\left(t_{0}\right)$), in contrast to the intervals contained in set $a\left(t_{0}\right)$, are not fixed; however, the number μ is taken as specified); $T^{\circ} \subseteq T$ is the set of initial instants of time $t_{0} ; \Xi=\{(t, x): t \in$ $\left.T, x \in X^{t}\right\}$ is the space of positions; X^{t} is the state space at instant $t ; H$ is the space of initial data; $H_{t_{0}}$ is the space of inputs and (or) of initial states at instant $t_{0} ; r$ is the fundamental ratio of the process system, with domain dom $r \subseteq H$ such that for any h from dom r, rh is the collection of processes $x(\cdot, h)$ of process system S with initial data h, whose domain is $T_{t_{0}}(x, h):\left(V t \in T_{t_{0}}(x, h)\right)$ $x(t, h) \in X^{t}$; in addition, we assume
\[

$$
\begin{align*}
& \left(\forall t_{0} \in T^{\circ}\right) P_{t_{0}}^{*} \equiv\left(P^{\circ} \cap \operatorname{dom} r\right)_{t_{0}} \neq \varnothing \tag{1.2}\\
& \left(\forall h=\left(t_{0}, h_{t_{0}}\right) \in \operatorname{dom} r\right)(\forall x \in r h) \quad T_{t_{0}}(x, h) \| T_{t_{0}}
\end{align*}
$$
\]

Properties $P_{1^{\circ}}$ and $P_{2^{\circ}}$ had not been mentioned earlier, however, they often obtain in the dynamics of regulatable systems. Property $P_{3^{\circ}}$, closely connected with the property of a differential regulatable system, cannot be expanded to an oscillatory one [11]. The meaning of property $P_{2^{\circ}}$ is the following. For any initial data $h=$ $\left(t_{0}, h_{t_{0}}\right), t_{0} \in T^{\circ}, h_{t_{0}} \in P_{t_{0}}^{*}, \quad$ and for any processes with these initial data: 1) $x(t$, $h) \in P^{t}$ for all $t \in T_{t_{0}}$; 2) an interval $\Delta=\left[t_{-}, t^{-}\right) \subseteq T_{t_{0}}$ from the set $a\left(t_{0}\right)$ of intervals exists such that $\quad x(t, h) \in P_{f} t \quad$ for all $t \in \Delta$. The sets P, P_{f}, P° and $a\left(t_{0}\right)$ are considered to be specified a priori . In contrast to $\mathrm{P}_{2^{\circ}}$, in property $\mathrm{P}_{3^{\circ}}$ the set $a_{\mu}\left(t_{0}\right)$ of nonintersecting intervals of "length" not less (or not greater) than μ, located to the right of point t_{0}, is assumed to exist; and $x(t, h) \in P_{f} t$ for any $\Delta \in a_{\mu}\left(t_{0}\right)$ and for all $t \in \Delta$. In real situations P^{t} is the set of possible states of the system, while $P_{f}{ }^{t}$ is the set of its required states when some additional constraints on accuracy, transient performance, etc. are fulfilled.

Obviously, $\mathrm{P}_{1} \bullet \Rightarrow \mathrm{P}_{2^{\circ}}$. On the other hand, property $P_{1^{\bullet}}$ is equivalent to the property

$$
\begin{aligned}
& \mathrm{P}_{1^{\prime}} \equiv\left\{W_{1} W_{2} x(t, h) \in P_{1}^{t}\right\} \\
& P_{1}^{t}= \begin{cases}P^{t}, & t \in T_{t_{0}} \backslash\left(\bigcup_{\Delta \in a\left(t_{0}\right)} \Delta\right) \\
P^{t} \cap P_{1}{ }^{t}, & t \in\left(\bigcup_{\Delta \in a\left(t_{0}\right)} \Delta\right)\end{cases}
\end{aligned}
$$

called the $P_{1} P^{\circ}$ and is estimate on T [9] of process system S. Each of the properties $\mathrm{P}_{i^{\circ}}(i=1,2,3)$ reduces, under special assumptions on $T, T^{\circ}, P, P^{\circ}$, $P_{f}, a\left(t_{0}\right), a_{\mu}\left(t_{0}\right)$, to one of the following specialized forms of stability: $(A, \lambda$, $\left.t_{0}, T\right)$, viz., Chetaev stability [1], practical stability [3], (total) practical stability and its uniform analog relative to time-varying sets, stochastic practical stability [12]. In addition, properties $P_{1^{\circ}}$ and $P_{2^{\circ}}$ reduce to practical stability with prescribed settling time [6], while $P_{3^{\circ}}$ reduces to terminal and semiterminal stability [7] and their uniform analogs, as well as to quasicontractive and contractive stability relative to time-variable sets [4]. The proof of this proposition in toto is cumbersome; therefore, let us restrict ourselves, say, to establishing the fact that practical stability
[3] ensues from $\mathbf{P}_{1^{\circ}}$.
Let $R_{0}^{1}=[0,+\infty), Q$ be a region in $R^{n}, Q^{\circ} \subset Q, C^{*} \subseteq C\left[R_{0}^{1} \quad \times\right.$ Q, R^{n}), i.e., C^{*} is some set from the class of n-dimensional functions continuous and defined on $\boldsymbol{R}_{0}{ }^{1} \times Q$. Let us consider a family of ordinary differential equations

$$
\begin{align*}
& \dot{x}=f(t, x)+R(t, x), x\left(t_{0}\right)=x_{0} \in Q^{\circ}, R \in C^{*} \tag{1.3}\\
& f \in C\left[R_{0}^{+} \times Q, R^{n}\right]
\end{align*}
$$

We assume that $\left(\forall x_{0} \in Q^{\circ}\right)\left(\forall t_{0} \geqslant 0\right)\left(\forall R \in C^{*}\right)$ each classical solution $x_{R}(\cdot$, t_{0}, x_{0}) of the Cauchy problem for (1.3) with $x_{R}\left(t_{0}, t_{0}, x_{0}\right)=x_{0}$ is continuable to the right onto the interval $\left[t_{0},+\infty\right)$. System (1.3) possesses practical stability in the sense of [3] if

$$
\begin{align*}
& \left(\forall t_{0} \in T^{\circ}\right)\left(\forall x_{0} \in Q^{\circ}\right)\left(\forall R \in C^{*}\right)\left(V x_{R}\left(\cdot, t_{0}, x_{0}\right)\right) \tag{1,4}\\
& \left(\forall t \in\left[t_{0},+\infty\right)\right) x_{R}\left(t, t_{0}, x_{0}\right) \in Q
\end{align*}
$$

We take $T=T^{\circ}=R_{0}{ }^{\mathbf{1}}, X^{t}=X=Q, H_{t_{0}}=Q^{\circ} \times C^{*}$; we specify the process system S as the set of all classical solutions $x_{R}\left(\cdot, t_{0}, x_{0}\right)\left(t_{0} \in T^{0}, x_{0} \in Q^{\circ}\right)$ of problem (1.3) with $R \in C^{*}$. Then $\operatorname{dom} r=T^{\circ} \times H_{t_{0}} ;\left(\forall h=\left(t_{0}, x_{0}, R\right)\right.$ $\in \operatorname{dom} r) \mathrm{rh}=\left\{x_{R}\left(\cdot, t_{0}, x_{0}\right)\right\}$, i.e., rh is the set of all classical solutions of Eq. (1.3) with specified $t_{0}, x_{0}, R ;(\forall h \in \operatorname{dom} r)(\forall r \in \operatorname{rh}) T_{t_{0}}(x, h)=$ $\left[t_{0},+\infty\right)$. We set

$$
\begin{aligned}
& P_{t_{0}}^{0}=H_{t_{0}}, P_{f}^{t}=P^{t}=Q, a\left(t_{0}\right)=\{\Delta\}, \Delta=\left[t_{0},+\infty\right), \\
& P^{*}=\operatorname{dom} r
\end{aligned}
$$

The formula of property P_{1}. takes the form

$$
\begin{aligned}
& \left(\forall h=\left(t_{0}, x_{0}, R\right) \in T^{\circ} \times Q^{\circ} \times C^{*}\right)\left(\forall x_{R}\left(\cdot, t_{0}, x_{0}\right) \in\right. \\
& \quad \mathbf{r h})\left(\forall t \in\left[t_{0},+\infty\right)\right) \\
& x_{R}\left(t, t_{0}, x_{0}\right) \in Q
\end{aligned}
$$

coinciding with (1.4). Q.E.D. The other implications described in the proposition are proved analogously.

On the basis of the comparison principle $[9,10]$ we obtain comparison theorems for the composite dynamic properties $\mathbf{P}_{i}{ }^{\circ}$. For the process system S under assumptions (1.2) let there exist comparison systems $S_{c}{ }^{\alpha}$ and vector-valued comparison functions $V^{\alpha}=\left(v^{\alpha}, w^{\alpha}, v_{01}^{\alpha}, v_{02}^{\alpha}\right)(\alpha=1,2)[10]$ and let the conditions

$$
\begin{align*}
& \left(V t_{0 c}^{\alpha} \in T_{c}^{o \alpha}\right) p_{t_{0}}^{* \alpha} \equiv\left(P_{c}^{0 \alpha} \cap \operatorname{dom} r_{c}^{\alpha}\right)_{t_{0} \alpha_{c}} \neq \varnothing \tag{1.5}\\
& \left(V h_{c}^{\alpha}=\left(t_{0 c}^{\alpha}, h_{t_{0} c}^{\alpha}\right) \in \operatorname{dom} r_{c}^{\alpha}\right)\left(\forall x_{c}^{\alpha} \in r_{c}^{\alpha} h_{c}^{\alpha}\right) \quad T_{t_{0}^{\alpha} \alpha_{c}}^{\alpha}\left(x_{c}^{\alpha}, h_{c}^{\alpha}\right)=T_{t_{0} \alpha_{c}}^{\alpha}
\end{align*}
$$

be fulfilled. Here $t_{0 c}{ }^{\alpha}, h_{t c c}{ }^{\alpha}, h_{c}^{\alpha}, \ldots$, and $T_{c}{ }^{\alpha}, P_{c}{ }^{\circ}, P_{t_{0}} * \alpha, \ldots$ are, respectively, variables and constants by which the comparison system S_{r}^{α} is described. Since the dynamic properties $\mathrm{P}_{i^{\circ}}(i=1,2,3$, contain two concluding formulas R_{1} and R_{2}, two comparison systems $S_{c}{ }^{\alpha}$ and two vector-valued comparison functions $V^{\alpha}(\alpha=1,2)$ are used [10], in general, for obtaining the
comparison theorems．As a rule，we take（＊）${ }^{1} S_{c}{ }^{1}=S_{c}{ }^{2}$ and $\quad V^{1}=V^{2}$ ．For the dynamic property $\mathbf{P}_{i^{\circ}}$（respectively，for the primary property $\mathbf{P}_{i^{\circ}}{ }^{\boldsymbol{\alpha}}$ correspond－ ing to the concluding formula R_{α} ）the dynamic comparison property（respectively， the primary dynamic property of the comparison system $S_{c}{ }^{\alpha}$ ）is expressed by formula of $\mathrm{P}_{i^{\circ} \mathrm{c}}$（respectively，of $\mathrm{P}_{i^{\circ}{ }_{c}{ }^{\alpha} \text { ）obtained from } \mathrm{P}_{i^{\circ}} \text {（respectively，from } \mathrm{P}_{i^{\circ}}{ }^{\alpha} \text { ）}{ }^{\text {a }} \text { ）}}$ by attaching a subscript c and a superscript a to all the symbols occurring in it．

The following comparison lemmas for the dynamic properties $\mathrm{P}_{i^{\circ}}(i=1,2,3)$ are derived from the comparison principle［10］（the symbol \vdash denotes deducibility in the present theory）：

$$
\begin{align*}
& \bigwedge_{\alpha=1}^{2}\left[\left(A_{\alpha}\right) \wedge\left(B_{\alpha}\right) \wedge C_{i^{\circ}}^{\alpha} B^{\alpha}\right] \vdash \mathrm{P}_{i^{\circ}} \Rightarrow \mathrm{P}_{i^{\circ}} \tag{1.6}\\
& \left(A_{\alpha}\right) \equiv\left\{\left(\forall h=\left(t_{0}, h_{t_{0}}\right) \in \operatorname{dom} r\right)\right. \tag{1.7}\\
& \left.h_{c}{ }^{\alpha}=\left(t_{0 c}^{\alpha}, h_{t_{0} c}^{\alpha}\right)=\left(v_{01}{ }^{\alpha}\left(t_{0}\right), v_{02}{ }^{\alpha}(h)\right) \in \operatorname{dom} r_{c}{ }^{\alpha}\right\} \\
& \left(B_{\alpha}\right) \equiv\left\{\left(\forall h=\left(t_{0}, h_{t_{0}}\right) \in H_{*}^{\alpha}\right)(\forall x \in \mathrm{rh})\left({ }^{(} x_{c}^{\alpha} \in r_{c}{ }^{\alpha} h_{c}{ }^{\alpha}\right)\left(\forall t \in T_{*}{ }^{\alpha}\right)\right. \tag{1.8}\\
& \left.v^{\alpha}(t, x(t, h), h) \leqslant x_{c}{ }^{\alpha}\left(w^{\alpha}(t), v_{01}{ }^{\alpha}\left(t_{0}\right), v_{02}{ }^{\alpha}(h)\right)\right\} \\
& T_{*}{ }^{\alpha} \subseteq T_{t_{0}} \cap\left(w^{\alpha}\right)^{-1}\left(T_{t_{0} \alpha_{c}}^{\alpha}\right) \\
& H_{*}{ }^{\alpha} \subseteq\left\{h \in \operatorname{dom} r:(\forall x \in r h)\left(\forall t \in T_{t_{0}}\right)(t, x(t, h), h) \in \operatorname{dom} v^{\alpha}\right\} \tag{1.9}\\
& B^{\alpha} \equiv\left\{\left(\forall t_{0 c}^{\alpha}=v_{01}^{\alpha}\left(t_{0}\right)\right) \wedge\left(\forall h_{t_{0} \alpha_{c}}^{\alpha}=v_{\theta 2}^{\alpha}(h)\right) \wedge\left(t_{c}^{\alpha}=w^{\alpha}(t)\right) \wedge\right. \tag{1.10}\\
& \left(\neg R_{\alpha} \wedge R_{\alpha c} \Longrightarrow v^{\alpha}\left(t, x(t, h), h \not \approx x_{c}{ }^{\alpha}\left(t_{c}{ }^{\alpha}, h_{c}{ }^{\alpha}\right)\right)\right\} \\
& C_{i^{0}}{ }^{1}=W_{1}\left(\forall t \in T_{t_{0}}\right)\left(\exists t_{0 c}{ }^{1} \in T_{c}{ }^{01}\right)\left(\xi h_{t_{0}{ }^{1} c}^{1} \in P_{t_{0}{ }^{*} c}^{* 1}\right) \\
& \left(\forall x_{c}{ }^{1} \in r_{c}{ }^{1} h_{c}{ }^{1}\right)\left({ }^{1} t_{c}{ }^{1} \in T_{t 0^{1} c}^{1}\right), \quad C_{i{ }^{\circ}}{ }^{2}=C^{2} C_{i^{\circ}}{ }^{+2} \\
& C^{2}=W_{1}\left(\mathrm{~J} t_{0 c}{ }^{2} \in T_{c}{ }^{02}\right)\left(\forall h_{t_{0} c}^{2} \in P_{t_{0} c}^{* 2}\right)\left(\forall x_{c}{ }^{2} \in r_{c}{ }^{2} h_{c}{ }^{2}\right) \\
& \left.C_{1^{\circ}}{ }^{+2}=\left(\forall \Delta \in a\left(t_{0}\right)\right)(\forall t \in \Delta) \text { (可 } \Delta_{c}{ }^{2} \in a_{\mathrm{c}}{ }^{2}\left(t_{0 c}{ }^{2}\right) \text {) (G } t_{c}{ }^{2} \models \Delta_{c}{ }^{2}\right)
\end{align*}
$$

$$
\begin{aligned}
& C_{3^{+}}{ }^{+2}=\left(\forall a_{\mu c}^{2}\left(t_{0 c}{ }^{2}\right)\right)\left({ }^{(丁)} a_{\mu}\left(t_{0}\right)\right)\left(V \Delta \in a_{\mu}\left(t_{0}\right)\right) \\
& (\forall t \in \Delta)\left(\exists \Delta_{c}{ }^{2} \in a_{\mu c}^{2}\left(t_{o c}{ }^{2}\right)\right)\left(J t_{c}{ }^{2} \in \Delta_{c}{ }^{2}\right)
\end{aligned}
$$

To obtain comparison theorems from（1．6）we use the following procedure［10］．Let

$$
\begin{align*}
& C_{x i^{\circ}}^{* 1} X_{*}{ }^{1} \equiv\left\{\left(\forall t \in T_{*}{ }^{1} \cap \mathrm{pr}_{1} \operatorname{dom} v^{1}\right)\left(\forall x \in Q^{1 t} \backslash P^{\prime}\right)\right. \tag{1.11}\\
& \left.\left(\forall x_{c}{ }^{2} \in P_{c}^{1 w^{1}(t)}\right) v^{1}(t, x, h) \nless x_{c}{ }^{1}\right\} \\
& C_{x i^{\circ}}^{* 2} X_{*}{ }^{2} \equiv\left\{\forall t \in T_{*}{ }^{2} \cap\left(\bigcup_{\Delta \in a\left(t_{0}\right)} \Delta\right) \cap \mathrm{pr}_{1} \operatorname{dom} v^{2}\right) \\
& \left.\left(\mathrm{V} x \in Q^{2 t} \backslash P_{f}^{t}\right)\left(\forall x_{\mathrm{c}}{ }^{2} \in P_{f c}^{2 w^{2}(t)}\right) v^{2}(t, x, h) \nless x_{c}{ }^{2}\right\}, \quad i=1,2 \\
& C_{x 3^{\circ}}^{* 2} X_{*}{ }^{2} \equiv\left\{\left(\nabla t \in T_{*}{ }^{2} \cap\left(\underset{\Delta \in a_{\mu}\left(t_{0}\right)}{\bigcup} \Delta\right) \cap \mathrm{pr}_{1} \operatorname{dom} v^{2}\right)\right. \\
& \left.\left(\forall x \in Q^{2 t} \backslash P_{f}{ }^{l}\right)\left(\forall x_{c}{ }^{2} \in P_{f c}^{2 u^{2}(t)}\right) v^{2}(t, x, h) \not x_{c}{ }^{2}\right\}
\end{align*}
$$

＊）Anapol＇skii，L．Im．and Matrosov，V．M．，Comparison method in system dynamics and in abstract control theory．Repts．Abstracts Fifth Kazakhstan Interinst． Conf．Math．and Mech．，1974．Alma－Ata， 1974.

Here ($v t \in T) Q^{\alpha t} \subseteq \operatorname{pr}_{2} \operatorname{dom} v^{\alpha}, Q^{\alpha t} \quad$ is the set containing the values of all processes $x\left(\cdot, t_{0}, h_{t_{0}}\right)$ at instant t for $h_{t_{0}} \in P_{t_{0}}{ }^{*} \cap \operatorname{pr}_{3} \operatorname{dom} v^{\alpha}$, while $\operatorname{pr}_{\beta} \operatorname{dom} v^{\alpha}$ is the projection of set dom v^{α} onto the β-axis $(\beta=1,2,3)$. According to the algorithm for obtaining the comparison theorems [10] the conditions occurring in the comparison theorems for the dynamic properties $\mathrm{P}_{i^{\circ}}$ are, with due regard to (1.11), written as follows:

$$
\begin{align*}
& C_{t i^{\circ}}^{\alpha}\left(t_{0 \mathrm{c}}{ }^{\alpha}=v_{01}{ }^{\alpha}\left(t_{0}\right)\right) \equiv\left\{v_{01}{ }^{\alpha}\left(T^{\circ}\right) \subseteq T_{c}{ }^{\alpha \alpha}\right\} \quad(\alpha=1,2) \tag{1.12}\\
& C_{h_{0} i^{\circ}}^{\alpha}\left(h_{t_{0} \alpha_{c}}^{\alpha}-v_{02}^{\alpha}(h)\right) \equiv\left\{\left(\forall t_{0} \in T^{\circ}\right) v_{02}{ }^{\alpha}\left(t_{0}, P_{t_{0}}{ }^{*}\right) \subseteq P_{v_{01}{ }^{\alpha} \alpha_{(t) c}}^{* \alpha}\right\} \tag{1.13}\\
& C_{t i^{\circ}}^{1}\left(t_{c}^{1}=w^{1}(t)\right) \equiv\left\{\left(V t_{0} \in T^{\circ}\right) w^{1}\left(T_{t_{0}}\right) \subseteq T_{v_{01}\left(t_{0}\right) c}^{1}\right\} \tag{1.14}
\end{align*}
$$

$$
\begin{align*}
& C_{t 2^{\circ}}^{2}\left(t_{c}{ }^{2}=w^{2}(t)\right) \equiv\left\{\left(V t_{0} \in T^{\circ}\right)\left(\forall \Delta_{c}{ }^{2} \in a_{c}{ }^{2}\left(v_{01}{ }^{2}\left(t_{0}\right)\right)\right)\right. \\
& \text { (} \left.\left.G \Delta \in a\left(t_{0}\right)\right) \quad w^{2}(\Delta) \subseteq \Delta_{c}{ }^{2}\right\} \\
& C_{t 3^{\circ}}{ }^{2}\left(t_{c}{ }^{2}=w^{2}(t)\right)=\left\{\left(\forall t_{0} \in T^{\circ}\right)\left(\forall a_{\mu c}{ }^{2}\left(v_{01}{ }^{2}\left(t_{0}\right)\right)\right)\left(\mathcal{F} a_{\mu}\left(t_{0}\right)\right)\right. \\
& \left(\forall \Delta \in a_{\mu}\left(t_{0}\right)\right)(\forall t \in \Delta)\left(G \Delta_{c}{ }^{2} \in a_{\mu_{c}}{ }^{2}\left(v_{01}{ }^{2}\left(t_{0}\right)\right)\right)\left({ }^{\prime} t_{c}{ }^{2} \in \Delta_{c}{ }^{2}\right) \\
& \left.t_{\mathrm{c}}{ }^{2}=w^{2}(t)\right\} \\
& C_{x * i^{\circ}}^{1} X_{*}{ }^{1} \equiv\left\{W^{1} C_{x i^{\circ}}^{2} X_{*}{ }^{1}\right\} \tag{1.15}\\
& C_{x * i^{\circ}}^{2} X_{*}{ }^{2} \equiv\left\{W^{2} C_{x i}^{2}{ }^{2} X_{*}{ }^{2}\right\}, \quad i=1,2 \\
& C_{x * 3^{\circ}}^{2} X_{*}{ }^{2} \equiv\left\{W^{2}\left(\forall t \in T_{*}{ }^{2} \cap \operatorname{pr}_{1} \operatorname{dom} v^{2}\right)\right. \\
& \left.\left(\forall x \in Q^{2 t} \backslash P_{f}^{t}\right)\left(\forall x_{c}{ }^{2} \in P_{f c}^{2 m^{2}(t)}\right) v^{2}(t, x, h) \$ x_{c}{ }^{2}\right\} \\
& W^{\alpha}=\left(\forall t_{0} \in T^{C}\right)\left(\forall h_{t_{0}}{ }^{\mathrm{j}} \in P_{t_{0}}{ }^{*} \cap \mathrm{pr}_{3} \operatorname{dom} v^{\alpha}\right)
\end{align*}
$$

Thus, the following theorem holds for the dynamic properties $\mathrm{P}_{i^{\circ}}$.
Comparisun theorem 1. Let comparison systems $S_{\mathrm{c}}{ }^{\alpha}$ and vectorvalued comparison functions $V^{\alpha}=\left(v^{\alpha}, w^{\alpha}, v_{01}{ }^{\alpha}, v_{02}{ }^{\alpha}\right)(\alpha=1,2)$, satisfying conditions (1.5), exist for the process system S under assumptions (1.2). Then

$$
\bigwedge_{\alpha=1}^{2}\left[C_{h_{0} i^{\circ}}^{\alpha}\left(h_{t_{0}{ }^{\alpha} c}^{\alpha}=v_{02}^{\alpha}(h)\right) \wedge C_{i^{\circ}}^{\alpha}\left(t_{c}^{\alpha}=w^{\alpha}(t)\right) \wedge C_{x * i^{\circ}}^{\alpha} X_{*}^{\alpha}\right] \vdash \mathrm{P}_{i^{\circ} \mathbf{c}} \Rightarrow \mathrm{P}_{i^{\circ}}
$$

where the formulas mentioned are specified by relations (1.13)-(1.15).
Note that under the condition $v_{01}{ }^{\alpha}: T^{\circ} \rightarrow T_{c}{ }^{\circ} \alpha(\alpha=1,2)$ formula (1.12) is generally valid; therefore, the condition $C_{t, i^{0}}{ }^{\alpha}\left(t_{0 c}{ }^{\alpha}=v_{01}{ }^{\alpha}\left(t_{0}\right)\right)$ does not appear in the theorem's statement.

Notes. 1°. Condition (1.13) signifies that at any initial instant $t_{0} \in T^{\circ}$ the image of some fixed set $P_{t_{0}}{ }^{*}$ from the initial data space $H_{t_{0}}$ under the mapping $v_{02}{ }^{\alpha}$ is contained in the fixed set $P_{v_{01} \alpha_{\left(t_{0}\right)} c}^{* \alpha}$ of the initial data space of the comparison system $\quad S_{c}{ }^{\alpha}$.
2°. Relations (1.14) signify the imbeddability under mapping w^{α} of certain time intervals $T_{t_{0}}, \Delta, \ldots$ of process system S into the corresponding time intervals $T_{t_{0} \alpha_{c}}^{\alpha}, \Delta_{\mathbf{c}}^{\alpha}, \ldots$ of comparison system S_{c}^{α}.
3°. The first (respectively, the second and third) requirement assumes that for
any initial data from the set $P_{t_{0}}^{*} \cap \mathrm{pr}_{3} \operatorname{dom} v^{1}$ (respectively, $\quad P_{t_{0}}{ }^{*} \cap \mathrm{pr}_{3} \operatorname{dom} v^{2}$) and for certain $t \geqslant t_{0}$ the function v^{1} (respectively, v^{2}) cannot be majorized from above in the sense of a partial order from $X_{c}^{1 w^{1}(t)}$ (respectively, $X_{c}^{2 \omega^{z}(t)}$) by elements of set $p_{c}^{1 w^{1}(t)}$ (respectively, $\rho_{j c}^{2 w^{2}(t)}$) when x is chosen from the set $Q^{1 t} \backslash P^{t}$ (respectively, $Q^{2 t} \backslash P_{f}{ }^{t}$).

The comparison theorem obtained is a general one and, under special assumptions on the process systems S and S_{c}^{α} and on the vector-valued functions V^{α}, from it follow comparison theorems for differential and difference equations, for dynamic and dispersible systems, etc. Further, this theorem can be made more specific for the case when the process systems S and $S_{c}{ }^{\alpha}$ are sets of solutions of ordinary differential equations.
2. Application to differential equations. Let E be a real Banach space $T=[0, \tau)$ be an interval of time $t, \quad T \subseteq R_{0}{ }^{1} \equiv[0$, $+\infty), T^{\circ} \subseteq T, G \subseteq T \times E, \mathrm{pr}_{1} G=T, F$ be the set of functions $z: G \rightarrow L$, where L is some metric space. For each function $z \in F$ we can examine an ordinary differential equation in E

$$
\begin{equation*}
x^{\cdot}=f(t, x, z(t, x)) \tag{2.1}
\end{equation*}
$$

Here the operator $f: G \times L \rightarrow E$ satisfies in its own domain the conditions of the existence theorem for solutions in the Carathéodory sense (C-solutions), i. e., for any $h=\left(t_{0}, x_{0}, z\right) \in \Omega^{\circ} \equiv G^{\circ} \times F\left(G^{\circ} \subseteq T \times \overline{\mathrm{pr}_{2} G}, \overline{p r_{2} G}\right.$ is the closure of $\mathrm{pr}_{2} G$ in E) the C-solution $x(\cdot, h)$ of the Cauchy problem for Eq. (2.1) exists, defined on the interval $\left[t_{0}, \tau\right)$. We take the system of C-solutions of the Cauchy problem for Eq. (2,1) as a process system S by assuming ($\forall t \in T$) $X^{t}=$ $E,\left(\forall t_{0} \in T^{\circ}\right) H_{t_{0}}=G_{t_{0}}{ }^{\circ} \times F, \operatorname{dom} r=\Omega^{\circ} ;$ here $\left(\forall h=\left(t_{0}, x_{0}, z\right) \in \Omega^{\circ}\right)$ $\mathrm{rh}=\{x(\cdot, h)\}$ is the set of C-solutions of Eq. (2.1) with initial data h, such that

$$
(\forall x(\cdot, h) \in r h) x\left(t_{0}, t_{0}, x_{0}, z\right)=x_{0} \wedge T_{t_{0}}(x, h)=\left[t_{0}, \tau\right)
$$

Let the continuous function $v^{\alpha}: T \times \overline{\mathrm{pr}_{2} G} \times F \rightarrow R^{k_{\alpha}},(t, x, z) \leftrightarrow v^{\alpha}$ $(t, x, z)\left(\alpha=1,2\right.$ and a componentwise partial ordering is introduced in $\left.R^{k} \alpha\right)$ be such that $\left(\forall h \in \Omega^{\circ}\right)(\forall x(\cdot, h) \in \mathrm{rh})$ the function $v^{\alpha}(\cdot, x(\cdot, h), z)$ of the variable t is absolutely upper-semicontinuous in the sense of [13] on any interval $\left[t_{0} \mathcal{F}_{0}\right] \subset\left[t_{0}, \tau\right)$ and

$$
\begin{align*}
& D_{+} v^{\alpha}(t, x, z) \equiv \lim _{s \rightarrow 0^{+}} \inf s^{-1}\left[v^{\alpha}(t+s, x+s f(t, x, z(t, x)), z)-\right. \tag{2.2}\\
& \left.\left.v^{\alpha}(t, x, z)\right] \leqslant g^{\alpha}\left(t, v^{\alpha}(t, x, z)\right) \quad \alpha=1,2\right)
\end{align*}
$$

for any x and z and for almost all t such that $(t, x, z) \in G_{1}{ }^{\alpha} \times F$. Here $\left.G_{1}{ }^{\alpha} \subseteq G, \mathrm{pr}_{1} G_{1}{ }^{\alpha}=T,(\forall) \in T\right) G_{1}{ }^{\alpha} \neq \varnothing$; the measurable function $g^{\alpha}: T$ $\times A^{\alpha} \rightarrow R^{h_{\alpha}}\left(A^{\alpha} \quad\right.$ is a region in $R^{k} \alpha$, containing the set of values being examined of function v^{α}) satisfies in $T \times A^{\alpha}$ the condition in [14] on the variable v^{α}, i.e., $g_{8}{ }^{\alpha}\left(t, v_{1}{ }^{\alpha}\right) \leqslant g_{3}{ }^{\alpha}\left(t, v_{2}{ }^{\alpha}\right)$ when $v_{1}{ }^{\alpha} \leqslant v_{2}{ }^{\alpha}, v_{18}{ }^{\alpha}=v_{2 s}{ }^{\alpha}$, for almost all $t \in T$ and for any $s=1, \ldots, k_{\alpha}$, while in any compact set $B^{\alpha} \subset T \times A^{\alpha}$ the function g^{α} is measurable in t and is bounded in norm by a summable function $\varphi_{B}{ }^{\alpha}(t)$:

$$
\begin{aligned}
& \left\|g^{\alpha}\left(t, v^{\alpha}\right)\right\| \leqslant \varphi_{B^{\alpha}}(t) \text { when }\left(t, v^{\alpha}\right) \subseteq b^{\alpha}, \\
& \int_{T_{E^{\alpha}}} \varphi_{B}^{\alpha}(t) d t<+\infty, \quad T_{B^{\alpha}}=\operatorname{pr}_{1} B^{\alpha} \subset T
\end{aligned}
$$

Here measure, measurability and integral are to be understood in the Lebesgue sense. On the basis of (2.2) we can form an auxiliary system of ordinary differential equations in $R^{k_{\alpha}}$

$$
\begin{equation*}
x^{\alpha_{c}}=g^{\alpha}\left(i, x^{\alpha}{ }_{c}\right) \quad(\alpha=1,2) \tag{2.3}
\end{equation*}
$$

For system (2.3) we examine generalized solutions of the second kind [15], determined by the initial data $h_{0}{ }^{\alpha}=\left(t_{0}, x_{c_{0}}{ }^{\alpha}\right) \in T \times A^{\alpha}$. These solutions are assumed to exist for any $h_{\mathrm{c}}{ }^{\alpha} \in T \times A^{\alpha}$ on the interval $T_{t_{0}}=\left[t_{0}, \tau\right)$. From Theorem 1 on a differential inequality in [14] we have

$$
\begin{aligned}
& \left(\forall h \in \Omega^{\circ} \cap\left(G_{1}^{\alpha} \times F\right)\right)(\forall x(\cdot, h) \in r h)\left(\forall t \in T_{*}^{\alpha}\right) \\
& v^{\alpha}(t, x(t, h), z) \leqslant x_{c}^{* \alpha}\left(t, h_{c}^{\alpha}\right)
\end{aligned}
$$

Here $x_{\mathrm{c}}{ }^{* \alpha}\left(\cdot, h_{e}{ }^{\alpha}\right)$ is the upper solution of Eqs. (2.3), passing through the initial point $h_{c}{ }^{\alpha}=\left(t_{0}, x_{c_{0}}{ }^{\alpha}=v^{\alpha}(h)\right)$ (the existence of upper generalized solutions of the second kind of Eqs. (2.3) is ensured [14] by the above-mentioned conditions for function g^{α}), and $T_{*}{ }^{\alpha}$ is the subset of T, during which $x(\cdot, h)$, having started in $\Omega^{\circ} \cap\left(G_{1}{ }^{\alpha} \times F\right)$, remains $G_{1}{ }^{\alpha}$. We introduce the vector-valued function $V^{\alpha}=$ $\left(v^{\alpha}, w^{\alpha}, v_{01}{ }^{\alpha}, v_{02}^{\alpha}\right)(\alpha=1,2)$, whose component v^{α} has been defined above, $w^{\alpha}=v_{01}^{\alpha}=1$, while function v_{02}^{α} is specified by the relation

$$
\begin{equation*}
\left(\forall h \in \Omega^{\circ}\right) \quad v_{02}{ }^{\alpha}(h)=v^{\alpha}(h) \tag{2.5}
\end{equation*}
$$

Let $H_{*}{ }^{\alpha}=\Omega^{\hat{\beta}}$ (see (1.9)). We define the process system $S_{c}{ }^{\alpha}$ as the set of generalized solutions of the second kind of Eqs. (2.3) with initial data $h_{c}{ }^{\alpha} \in T \times$ A^{α}. Estimation of (2.4) shows that conditions (1.7) and (1.8) are fulfilled; consequently, the process system $S_{c}{ }^{\alpha}$ and the vector-valued function $V^{\dot{\alpha}}=\left(v^{\alpha}, 1\right.$, $\left.1, v^{\alpha}\right)$ are the comparison system and the vector-valued comparison function for the process system S. In addition, we take (see (1.2) and (1.5))

$$
\begin{align*}
& P \subset T \times E,(V t \in T) P^{t} \cap G_{1}{ }^{1 t} \neq \varnothing, P_{j} \subset T \times E, \tag{2.6}\\
& (\forall t \in T) P_{f}^{t} \cap G_{1}{ }^{2 t} \neq \varnothing \\
& P^{\circ} \subset T^{\circ} \times E \times F,\left(\forall t_{0} \in T^{\circ}\right) \mathrm{pr}_{2} P^{\circ} \subseteq G_{1}^{\alpha t_{0}}, P^{*}=P^{\circ} \cap \Omega^{\circ} \\
& \left(\forall t_{0} \in T^{\circ}\right) P_{t_{0}}{ }^{*} \neq \varnothing, \quad\left(\forall t_{0} \in T^{\circ}\right)\left(\forall h_{t_{0}} \in P_{t_{0}}{ }^{*}\right)(V x(\cdot, h)) \\
& T_{t_{0}}(x, h)=\left[t_{0}, \tau\right) \\
& P_{c}{ }^{1} \subset T \times R^{k_{1}}, \quad R_{f_{c}}{ }^{2} \subset T \times R^{k_{2}}, \quad P_{c}{ }^{\circ \alpha} \subset T^{\circ} \times R^{k_{\alpha}} \\
& \left(V t_{0} \in T^{\circ}\right) P_{c t_{0}}^{* \alpha}=P_{c t_{0}}^{o \alpha} \cap A^{\alpha} \neq \varnothing \\
& \left(\forall h_{t_{0} c}^{\alpha} \in P_{c t_{0}}^{* \alpha}\right)\left(V x_{c}{ }_{c}^{\alpha}\left(\cdot, h_{c}^{\alpha}\right)\right) T_{t_{0} \alpha_{c}}^{\alpha}\left(x_{\mathrm{c}}^{\alpha}, h_{c}^{\alpha}\right)=\left[t_{0}, \tau\right)
\end{align*}
$$

Here $P, P_{f}, P^{\circ}, P_{c}{ }^{1}, P_{f_{c}}{ }^{2}$ and $P_{c}{ }^{\circ}$ are certain fixed sets in the appropriate spaces. We set

$$
\begin{equation*}
\left(\forall t_{0} \in T^{\circ}\right) a\left(t_{0}\right)=a_{c}^{\alpha}\left(t_{0}\right), \quad a_{\mu}\left(t_{0}\right)=a_{\mu c}^{\alpha}\left(t_{0}\right) \tag{2.7}
\end{equation*}
$$

Conditions (1.13) and (1.15), with due regard to (2.5)- (2.7) take the form virtue of (2.6) and (2.7) conditions (1.14) are fulfilled trivially)

$$
\begin{align*}
& C_{h_{0} i^{\circ}}^{\alpha}\left(x_{0 \mathrm{oc}}{ }^{\alpha}=v^{\alpha}(h)\right) \equiv\left\{\forall t_{0} \in T^{\circ}\right)\left(\forall h_{t_{0}}=\right. \tag{2.8}\\
& \left.\left.\left(x_{0}, z\right) \in P_{t_{0}}^{*}\right) v^{\alpha}\left(t_{0}, h_{t_{0}}\right) \in P_{c t_{0}}^{* \alpha}\right\} \\
& C_{x * i}^{1}{ }^{1} X_{*}{ }^{1} \equiv\left\{\left(\forall t_{0} \in T^{\circ}\right)(V z \in F)\left(V t \in\left[t_{0}, \tau\right)\right)\right. \tag{2.9}\\
& \left.\left(\mathrm{V} x \in \bar{G}_{1}{ }^{1{ }^{t}} \backslash P^{t}\right)\left(\forall x_{c}{ }^{1} \in P_{c}{ }^{1 t}\right) v^{1}(t, x, z) \not x_{c}{ }^{1}\right\} \\
& C_{x * i^{0}}^{2} X_{*}^{2} \equiv\left\{\forall t_{0} \in T^{\circ}\right)(\forall z \in F)\left(\forall t \in\left[t_{0}, \tau\right) \cap\left(\bigcup_{\Delta \in a\left(t_{0}\right)} \Delta\right)\right) \\
& \left.\left(\forall x \in \bar{G}_{1}{ }^{2 t} \backslash P_{f}{ }^{t}\right)\left(\forall x_{c}{ }^{2} \in P_{f c}{ }^{2 t}\right) v^{2}(t, x, z) \leqslant x_{c}{ }^{2}\right\}(i=1,2) \\
& C_{x^{*} 3^{\circ}}^{2} X_{*}{ }^{2}=\left\{\left(\mathrm{V} t_{0} \in T^{0}\right) \quad(\mathrm{V} z \in F) \quad\left(\mathrm{V} t \in\left[t_{0}, \tau\right)\right)\right. \\
& \left.\left(\forall x \in \bar{G}_{1}{ }^{2 t} \backslash P_{f}{ }^{\prime}\right)\left(\forall x_{c}{ }^{2} \in P^{2 t}{ }_{f c}\right) v^{2}(t, x, z) \not x_{c}{ }^{2}\right\}
\end{align*}
$$

Comparison Theorem 2. Let the above-mentioned assumptions concerning differential systems (2.1) and (2.3) and functions $v^{\alpha}(\alpha=1,2)$, as well as conditions (2.6) and (2.7), be satisfied. Then

$$
\bigwedge_{\alpha=1}^{2}\left[C_{h_{i^{\circ}} \cdot}^{\alpha}\left(x_{0 c}^{\alpha}=v^{\alpha}(h)\right) \wedge C_{x * i^{\circ}}^{\alpha} X_{*}^{\alpha}\right) \vdash-\mathrm{P}_{i^{\circ} c} \Rightarrow \mathrm{P}_{i^{\prime}}
$$

Here formulas $C_{h_{h^{1}}{ }^{\circ}}^{\alpha}\left(x_{0 c}{ }^{\alpha}=v^{\alpha}(h)\right)$ and $C_{x^{* i} i^{\bullet}}^{\alpha} X_{*}^{\alpha}$ are specified, respectively, by relations (2.8) and (2.9). Similar results can be obtained for functional and difference equations in E. Comparison Theorem 2 follows from Theorem 1.

Sometimes in applications we can find the general solution of comparison system (2.3) or obtain sufficiently accurate estimates for it. In this case the hypotheses of Comparison Theorem 2 are made more precise. For the formulas $C_{x i^{\circ}}^{* \alpha} X_{*}{ }^{\alpha}$ we take, instead of (1.11), the following expressions containing the upper solutions $x^{* \alpha}\left(\cdot, h_{c}{ }^{\alpha}\right)$ of comparison system (2.3) $\left(T_{i^{*}}{ }^{*} \subseteq\left[t_{0}, \tau\right) i=1,2,3\right)$:

$$
\begin{align*}
& C_{x i^{\circ}}^{*} X_{*}^{1} \equiv\left\{\left(\forall t \in\left[t_{0}, \tau\right)\right)\left(\forall x \in \bar{G}_{1}{ }^{1 t} \backslash P^{t}\right)\right. \tag{2.10}\\
& \left.\left(\forall x_{c}{ }^{1}=x_{\mathrm{c}}{ }^{* 1}\left(t, t_{0}, v^{1}\left(t_{0}, x_{0}, z\right)\right) \in P_{c}{ }^{1 t}\right) v^{1}(t, x, z) \not x_{c}{ }^{1}\right\} \quad\{i=1,2,3) \\
& C_{x i^{\circ}}^{*} X_{*}{ }^{2} \equiv\left\{(\forall t \in T _ { i ^ { \circ } } { } ^ { * }) (\forall x \in \overline { G } _ { 1 } { } ^ { 2 t } \backslash P _ { f } { } ^ { t }) \left(\forall x_{c}{ }^{2}=\right.\right. \\
& \left.\left.x_{c}^{* 2}\left(t, t_{0} v^{2}\left(t_{0}, x_{0}, z\right)\right) \in P_{f_{c}}{ }^{2 t}\right) v^{2}(t, x, z) \nless x_{c}{ }^{2}\right\} \quad(i=1,2)
\end{align*}
$$

$$
\begin{aligned}
& \left(\mathrm{V} x_{c}{ }^{2}=x_{c}^{* 2}\left(t, t_{0}, v^{2}\left(t_{0}, x_{0}, z\right)\right) \in P_{f c}^{2 t}\right)\left(v^{2}(t, x, z) \nleftarrow x_{c}^{2}\right\}
\end{aligned}
$$

On the basis of the procedure for deriving the comparison theorems [10], instead of conditions (2.9) we obtain

$$
C_{x^{*} i^{\circ}}^{\alpha} X_{*}^{\alpha} \equiv\left\{\left(\forall t_{0} \in T^{\circ}\right)(\forall z \in F) C_{x i^{\circ}}^{*} X_{*}^{\alpha}\right\}
$$

where the $C_{x i^{\circ}}^{* \alpha} X_{*}{ }^{\alpha} \quad$ are presented by expressions (2.10).
From Theorem 1 in [14] on a differential inequality for generalized solutions of the second kind of system (2.3) we have

$$
\begin{aligned}
& \left(\forall t_{0} \in T^{0}\right)\left(\forall x_{c_{0}}^{\alpha} \in A^{\alpha}: x_{c_{0}}{ }^{\alpha} \leqslant x_{c_{0}}^{\alpha *} \in A^{\alpha}\right)\left(\forall x_{c}^{\alpha}\left(\cdot, t_{0}, x_{c_{0}}{ }^{\alpha}\right)\right) \\
& \left(\forall t \in\left[t_{0}, \tau\right)\right) x_{c}^{\alpha}\left(t, t_{0}, x_{c_{0}}{ }^{\alpha}\right) \leqslant x_{c}^{* \alpha}\left(t, t_{0}, x_{c_{0}}^{\alpha *}\right)
\end{aligned}
$$

Consequently, if a vector $\quad M^{\alpha}\left(t_{0}\right) \in A^{\alpha}$ exists satisfying the condition

$$
\begin{equation*}
\left(\forall h=\left(t_{0}, h_{t_{0}}\right) \in\left(\Omega^{\circ} \cap\left(G_{1}^{\alpha} \times F\right)\right)\right) v^{\alpha}(h) \leqslant M^{\alpha}\left(t_{0}\right) \tag{2.11}
\end{equation*}
$$

then the upper solution $x_{c}{ }^{* \alpha}\left(\cdot, t_{0}, M^{\alpha}\left(t_{0}\right)\right)$ of comparison system (2.3) will majorize all other solutions with initial data $x_{c o}^{\alpha}=v^{\alpha}(h), h \in \Omega^{\circ} \cap G_{1}{ }^{\alpha} \times F$. We note that if

$$
M_{*}^{\alpha}\left(t_{0}\right)=\sup v^{\alpha}\left(t_{0}, h_{t_{0}}\right) \quad h_{t_{0}} \in\left(\Omega^{\circ} \cap\left(G_{1}^{\alpha} \times F\right)\right)_{t_{0}}
$$

exists, than we can set $M^{\alpha}\left(t_{0}\right)=M_{*}{ }^{\alpha}\left(t_{0}\right)$.
Let vectors $m^{\alpha}(t) \in R^{k_{\alpha}}$ exist such that

$$
\begin{align*}
& (\forall t \in T)\left(\forall x \in \bar{G}_{1}{ }^{1 t} \backslash P^{t}\right)(\forall z \in F) v^{1}(t, x, z) \geqslant m^{1}(t) \tag{2.12}\\
& (\forall t \in T)\left(\forall x \in \bar{G}_{1}^{2 t} \backslash P_{f}^{\prime}\right)(\vee z \in F) v^{2}(t, x, z) \geqslant m^{2}(t)
\end{align*}
$$

If

$$
\begin{aligned}
& m_{*}{ }^{1}(t)=\inf v^{1}(t, x, z), x \in \bar{G}_{1}{ }^{t} \in P^{t}, z \in F \\
& m_{*}{ }^{2}(t)=\inf v^{2}(t, x, z), x \in \bar{G}_{1}{ }^{2}{ }^{2} \in P_{f}{ }^{t}, z \in F
\end{aligned}
$$

exist, then for the accuracy of the estimates it is appropriate to take $m^{\alpha}(t)=m_{*}{ }^{\alpha}(t)$. The sets $P_{c}{ }^{1}, P_{f_{c}}{ }^{2}, P_{c}{ }^{\circ \alpha}(\alpha=1,2)$ are defined as follows:

$$
\begin{align*}
& \left(\forall t_{0} \in T^{\circ}\right) P_{c t_{0}}^{\circ}=v^{\alpha}\left(t_{0}, P_{t_{0}}{ }^{*}\right) \tag{2.13}\\
& \left(\forall t_{0} \in T^{\circ}\right)\left(\forall t \in\left[t_{0}, \tau\right)\right) P_{c}{ }^{1 t^{\prime}}=\left\{x_{c}{ }^{1} \in R^{k_{1}}: x_{c}{ }^{1} \leqslant x_{c}{ }^{* 1}\left(t, t_{0}, M^{1}\left(t_{0}\right)\right)\right\} \\
& \left(\forall t_{0} \in T^{\circ}\right)\left(V t \in\left[t_{0}, \tau\right)\right) P_{f_{c}}{ }^{2 t}=\left\{x_{c}{ }^{2} \in R^{k_{2}}: x_{c}{ }^{2} \leqslant x_{c}{ }^{* 2}\left(t, t_{0} M^{2}\left(t_{0}\right)\right)\right\}
\end{align*}
$$

Then the dynamic comparison properties $P_{i^{\circ} c}$ and condition (2.8)are filfilled. With due regard to (2.10) - (2.12), analogously to [10] we obtain from (1.6) the following test for the existence of properties P_{i} 。 in system (2.1).

Theorem 3. Let the assumptions relating to differential systems (2.1) and (2.3) and to functions v^{α} and the conditions (2.6), (2.7), (2.13) be satisfied and let vectors $M^{\alpha}\left(t_{0}\right) \in A^{\alpha}$ and $m^{\alpha}(t) \in R^{i \alpha}$ exist, for which relations (2.11) and (2.12) are valid. If

$$
\begin{align*}
& \left(\forall t_{0} \in T^{\circ}\right)\left(\forall t \in\left[t_{0}, \tau\right)\right) \quad m^{1}(t) \not x_{c}^{*_{1}}\left(t, t_{0}, M^{1}\left(t_{0}\right)\right) \tag{2.14}\\
& \left(\forall t_{0} \in T^{\circ}\right)\left(\forall t \in\left(\bigcup_{\Delta \in a\left(t_{0}\right)}^{\bigcup} \Delta\right) \quad m^{2}(t) \$ x_{c}^{* 2}\left(t, t_{0}, M^{2}\left(t_{0}\right)\right)\right.
\end{align*}
$$

then dynamic property P_{i} o holds in system (2.1). If the first condition in (2.14) and

$$
\begin{equation*}
\left(\forall t_{0} \in T^{\circ}\right)\left(3 \Delta \in a\left(t_{0}\right)\right)(\forall t \in \Delta), m^{2}(t) \not x_{c}^{* 2}\left(t, t_{0}, M^{2}\left(t_{0}\right)\right) \tag{2.15}
\end{equation*}
$$

are fulfilled, then property $\mathbf{P}_{\mathbf{2}^{\circ}}$ holds in system (2.1). If the first condition in (2.14) and

$$
\begin{equation*}
\left(\forall t_{0} \in T^{\circ}\right)\left(\exists a_{\mu}\left(t_{0}\right)\right)\left(\forall t \in\left(\bigcup_{\Delta \in a_{\mu}\left(t_{0}\right)} \Delta\right)\right) m^{2}(t) \approx x_{c}^{* 2}\left(t, t_{0}, M^{2}\left(t_{0}\right)\right) \tag{2.16}
\end{equation*}
$$

are fulfilled, then property $P_{3^{\circ}}$ is valid for system (2.1).
The simplest sufficient conditions for properties $P_{1} \circ$ to exist in system (2.1) are obtained from Theorem 3 when g^{α} is independent of $x_{c}{ }^{\alpha}$, since in this case the generalized solutions of (2.3) coincide with the classical solutions and are determined by quadrature

$$
x_{\mathrm{c}}{ }^{\alpha}(t)=x_{c_{0}}{ }^{\alpha}+\int_{t_{0}}^{t} g^{\alpha}(s) d s
$$

Consequently, the following is valid:
Corollary 1. Let the assumptions relative to differential systems (2.1) and (2.3) and to functions v^{α} with $g^{\alpha}\left(t, x_{c}^{\alpha}\right)=g^{\alpha}(t)$ and the conditions (2.6), (2.7), (2.13) be fulfilled and let vectors $M^{\alpha}\left(t_{0}\right) \in A^{\alpha}$ and $m^{\alpha}(t) \in R^{k_{\alpha}}$ exist, for which relations (2.11) and (2.12) are fulfilled. If

$$
\begin{align*}
& \left(\forall t_{0} \in T^{\circ}\right)\left(\forall t \in\left[t_{0}, \tau\right)\right) \quad m^{1}(t) \nVdash M^{1}\left(t_{0}\right)+\int_{t_{0}}^{t} g^{1}(s) d s \tag{2.17}\\
& \left(\forall t_{0} \in T^{\circ}\right)\left(\forall t \in\left(\bigcup_{\Delta \in a\left(t_{0}\right)} \Delta\right)\right) m^{2}(t) \not M^{2}\left(t_{0}\right)+\int_{t_{0}}^{t} g^{2}(s) d s
\end{align*}
$$

then property $P_{1^{\circ}}$. holds in system (2.1). If the first condition in (2.17) and

$$
\begin{equation*}
\left(\forall t_{0} \in T^{\circ}\right)\left(\exists \Delta \in a\left(t_{0}\right)\right)(\forall t \in \Delta) m^{2}(t) \nleftarrow M^{2}\left(t_{0}\right)+\int_{t_{0}}^{t} g^{2}(s) d s \tag{2.18}
\end{equation*}
$$

are fulfilled, then property $\mathrm{P}_{2^{\circ}}$ is fulfilled for system (2,1). If the first condition in (2.17) and

$$
\left(\forall t_{0} \in T^{0}\right)\left(\exists a_{\mu}\left(t_{0}\right)\right)\left(\forall t \in\left(\bigcup_{\Delta \in a_{\mu}\left(t_{0}\right)} \Delta\right)\right) m^{2}(t) \approx M^{2}\left(t_{0}\right)+\int_{t_{0}}^{2} g^{2}(s) d s
$$

are fulfilled, then property $\mathrm{P}_{3^{\circ}}$ is valid for system (2.1).
On the basis of the propositions in Sect. 1 analogous theorems for properties reducible from the properties $P_{i^{\circ}}$ we have examined, covering the well-known results in [5], follow directly from Theorems 2 and 3. Thus, for example, the following statement is obtained from Theorem 3 for the process systems S and $S_{c}{ }^{\alpha}$ being studied with $v^{1}(t, x, z) \equiv v^{2}(t, x, z), g^{1}\left(t, x_{c}{ }^{1}\right) \equiv g^{2}\left(t, x_{c}{ }^{2}\right)$ and for property P_{1} 。 with $P=P_{f}, a\left(t_{0}\right)=\{\Delta\}, \Delta=\left[t_{0}, \tau\right)$, which in this case reduces to uniform total stability relative to time-varying sets [5].

Corollary 2. Let the assumptions relative to differential systems (2.1) and (2.3) and to functions v^{α} and the conditions (2.6), (2.7), (2.13) and

$$
\begin{aligned}
& M^{1}\left(t_{0}\right)=\left\{\sup v_{1}{ }^{1}\left(t_{0}, h_{t_{0}}\right), \ldots, \sup v_{k_{1}}{ }^{1}\left(t_{0}, h_{t_{0}}\right)\right\} \in A^{1} \\
& h_{t_{0}} \in\left(\Omega^{0} \cap\left(G_{1}^{1} \times F\right)\right)_{t_{0}} \\
& m^{1}(t)=\left\{\inf v_{1}{ }^{1}(t, x, z), \ldots \inf v_{k_{1}}^{1}(t, x, z)\right\} \in R^{k_{1}} \\
& x \in \bar{G}_{1}{ }^{1 t} \backslash P t, \quad z \in F
\end{aligned}
$$

be fulfilled.
If $\left(\forall t_{0} \in T^{0}\right)\left(\forall t \in\left[t_{0}, \tau\right)\right) m^{1}(t) \not x_{c}{ }^{* 1}\left(t, t_{0}, M^{1}\left(t_{0}\right)\right), \quad$ then uniform total stability relative to time-varying séts obtains in system (2.1).

Example. Let the vector-valued functions $v^{\alpha}: T \times R^{n} \rightarrow R^{k} \alpha$, whose components are nonnegative quadratic forms, i.e.,

$$
v_{i}^{\alpha}(t, x)=x^{T} B i^{\alpha}(l) x, \quad i=1, \ldots, k_{\alpha}
$$

exist for system (2.1) with $E=R^{n}$ Here $B_{i}{ }^{\alpha}(t)$ is an $n \times n$-matrix differentiable with respect to t. Let the product with respect to time of each quadratic form v_{i}^{α} relative to system (2,1) admit of the estimate

$$
v_{i}^{\alpha}(t, x) \leqslant \sum_{j=1}^{k_{\alpha}} g_{i j}^{\alpha_{j}} v_{j}^{\alpha}(t, x) ; \quad i \neq j, \quad g_{i j}^{\alpha}=\text { const } \geqslant 0
$$

Comparison system (2.3) is now represented by the equation

$$
a_{c}^{\alpha}=G^{\alpha} x_{c}^{\alpha}, \quad G^{\alpha}=\left(g_{i j}^{\alpha}\right) \quad(\alpha=1,2)
$$

whose solution, passing through point $x_{c_{0}}^{\alpha}$ at instant $t \geqslant 0$, has the form

$$
x_{\mathrm{c}}^{\alpha}\left(t, t_{0}, x_{c_{0}}^{\alpha}\right)=\exp \left(G^{\alpha}\left(t-t_{0}\right)\right) x_{c_{0}}^{\alpha}
$$

Let the sets

$$
\begin{aligned}
& P-\left\{(t, x): t \in R_{0}^{1},\|x\|^{2}<\eta(t)\right\}, P_{f}:\left\{(t, x): t \in R_{0}^{1}\|x\|^{2} \leqslant \beta(t)\right\} \\
& P^{*}=P^{0}=\left\{\left(t_{0}, x\right): t_{0} \in R_{0}^{1},\|x\|^{2}<\gamma(t)\right\},\|x\|^{2}=x^{T} x
\end{aligned}
$$

be specified. Here $\eta(t), \beta(t), \gamma(t)$ are continuous time functions such that $(V) \in$
$\left.R_{0}^{1}\right): \eta(t), \beta(t), \gamma(t)>0 \quad$ and $\quad \eta(t)>\gamma(t)$. Then the vectors $M^{\alpha}\left(t_{0}\right)$ and $m^{\alpha}(t)$ (see (2.11) and (2.12)) are defined as follows:

$$
\begin{aligned}
& M^{\alpha}\left(t_{0}\right)=\Lambda^{\alpha}\left(t_{0}\right) \gamma\left(t_{0}\right), m^{1}(t)=\lambda^{1}(t) \eta(t), m^{2}(t)=\lambda^{2}(t) \beta(t) \\
& \Lambda^{\alpha}\left(t_{0}\right)=\left[\Lambda_{1}^{\alpha}\left(t_{0}\right), \ldots, \Lambda_{k_{\alpha}}^{\alpha}\left(t_{0}\right)\right]^{T}, \lambda^{\alpha}(t)=\left[\lambda_{1}^{\alpha}(t), \ldots, \lambda_{\kappa_{\alpha}}^{\alpha}(t)\right]^{T}
\end{aligned}
$$

Here $\Lambda_{i}{ }^{\alpha}(t)$ and $\lambda_{i}^{\alpha}(t)$ are, respectively, the largest and the smallest eigenvalues of matrix $B_{i}{ }^{\alpha}(t)$. If $T=T^{0}=R_{0}{ }^{1}$ and the conditions

$$
\begin{aligned}
& \left(\forall\left(t-t_{0}\right) \geqslant 0\right) \quad \lambda^{1}(t) \eta(t) * \exp \left[G^{1}\left(t-t_{0}\right)\right] \Lambda^{1}\left(t_{0}\right) \gamma\left(t_{0}\right) \\
& \left(\forall t_{0} \geqslant 0\right)\left(M a_{\mu}\left(t_{0}\right)\right)\left(V t \in\left(\underset{\Delta \in a_{\mu}\left(t_{0}\right)}{\cup} \Delta\right)\right), \quad \lambda^{2}(t) \beta(t) * \\
& \quad \exp \left[G^{2}\left(t-t_{0}\right)\right] \Lambda^{2}\left(t_{9}\right) \gamma\left(t_{0}\right)
\end{aligned}
$$

are fulfilled, then system (2.1) possesses property $P_{3^{o}}$.

REFERENCES

1. Chetaev,N. G., On certain questions related to the problem of the stability of unsteady motion. PMM Vol. 24, No. 1, 1960.
2. K a m enkov, G. V., On the stability of motion in a finite time interval. PMM, Vol. 17, No. 5, 1953.
3. La S a 11 e, J. P. and Lefschetz, S., Stability by Liapunov's Direct Method, with Applications, New York - London, Academic Press, 1961.
4. Weis s, L. and Infante, E. F., Finite-time stability under perturbing forees and on product spaces. IEEE Trans. Automat. Coutrol, Vol. AC-12, No. 1, 1967.
5. Michel, A. N., Quantitative analysis of simple and interconnected systems: stability, boundedness, and trajectory behavior. IEEE Trans. Circuit Theory, Vol. CT-17, No. 3, 1970.
6. Grujic, L. T., Non-Liapunov stability analysis of large-scale systems on time-varying sets. Internat. J. Control, Vol. 21, No. 3, 1975.
7. Grippo, L. and Lampariello, F., Practical stability of discrete-time systems. J. Franklin Inst., Vol. 302, No. 3, 1976.
8. Abgarian, K. A., Stability of motion on a finite interval. Itogi Nauki i Tekhniki, Obshchaia Mekhanika, Vol.3. Moscow, VINITI, 1976.
9. Matrosov, V. M., The comparison method in the dynamics of systems. I and II: Differents. Uravnen., Vol. 10, No. 9, 1974 and Vol. II, No. 3, 1975.
10. Matrosov, V. M., Anapol'skii, L. Iu. and Vasil'ev, S. N., Comparison Principle in Mathematical Theory of Systems. Novosibirsk, "Nauka", 1979.
11. Iakubovich, V. A., Frequency conditions of selfoscillations in nonlinear systems with one nonstationary nonlinearity. Sib. Mat. Zh., Vol. 14, No. 5, 1973.
12. Buslenko, N. P., Kalashnikov, V. V., and Kovalenko, I. N., Lectures on the Theory of Complex Systems. Moscow, "Sov. Radio", 1973.
13. A lekseev,V. M., A theorem on an integral inequality and some of its applications. Mat. Sb., Vol. 68, No. 2, 1965.
 hand sides. Differents. Uravnen. , Vol. 10, No. 7, 1974.
14. Matrosov, V. M., On differential equations and inequalities with discontinuous right hand sides. 1. Differents. Uravnen., Vol. 3, No. 3, 1967.

[^0]: *) Anapol'skii, L. I.i. and Matrosov, V. M., Comparison method in the analysis of perturbed processes. In: International IFAC Symposium on Problems of Organizational Control and on Hierarchical Systems (Baku, 1971). Reports Abstracts, Pt. 1. Moscow, "Nauka", 1972.

