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Certain dynamic properties of a process system are introduced, generalizing 
for differential and difference equations the majority of the known concepts 
(see [l- 81, for example) in the theory of practical stability, such as: (A, h, 

to, T) , viz., Chetaev stability [l], the practical stability of LaSalle and 
Lefschetz [3], quasicontractive and contractive stability under perturbations 

[4], terminal and semiterminal stability [7], and a number of others.Theorems 

covering many of the known stability tests (for example, total practical stabil- 
ity [S], practical stability with prescribed settling time [6], and some others) 
are obtained for a process system (*) with the aid of the comparison principle 
[9, lo]. Effectively verifiable cases of application of these theorems are select- 

ed. An example is presented. 

1. Theorems on estimates for a process System. 
For a process system S .with set T that is some subset of the real line R1 with a 

natural order relation inherited from R’ , we consider the dynamic properties express- 

ed by the formulas 

PI0 = {W, WVsR1 A (VA E a (to))(Vt E A)R,l} (1.1) 
P,- = {W, DV,R, /\ (3A E a (to))(V’t E A)R,l} 
P,o = W’, W,R, // (3a, (MVA E a,i (&,))(~t E A)&11 
W, = (Vt, E T”)(Yh, E P*t,)(Vz E rh), 
W2 c (Vt E Tt,(z, h)), R, = 3 (t, h) E P’ 
R,rx(t,h)~P;, z(-, h)=z 
H = {h =(to, h,,) : 4, E T”, hi, E H,,} 

Here P, P, E $2, and p” E H are certain fixed subset of sets E and H, 
such that (Vt E T) (respectively, (Y’taE T”)) their sections P’, Pf’ (respect- 
ively, P,,“) by the hyperplane t (respectively, t,) are not empty; U (to) is a 

set of fixed intervals A C_ Tt, of form [t_, t-), t_ E Tt, G {t E 5” : to < t} 

*) Anapol’skii, L. Iu. and Matrosov, v. M., Comparison method in the analysis 
of perturbed processes. In: International IPAC Symposium on Problems of Organiza- 
tional Control and on Hierarchical Systems (Baku, 1971). Reports Abstracts, Pt. 1. 
Moscow, “Nauka”, 1972. 
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(in the case of degenerate intervals A we take A = {t_}); a,, (to) is the set of 
nonintersecting intervals A = It_, t-) C Tt, whose measure mesA>p or 
mes A Q p (p = const > 0) (the intervals A E up (to)), in contrast to the 

intervals contained in set a (to), are not fixed; however, the number p is taken as 
specified); T” c T is the set of initial instants of time t,; 

T, 2 E X’} is the space of positions; 
E = {(t, z) : t E 

X’ is the state space at instant t; H is 
the space of initial data; Ht, is the space of inputs and (or) of initial states at in- 
stant to; r is the fundamental ratio of the process system, with domain dom r C H 
such that for any h from dom r, rh is the collection of processes z ( . f h) of 
process system s with initial data h, whose domain is Tt, (z, h):(Vt E Tt, (z, h)) 
x (t, h) E X’; in addition, we assume 

(V& E 7’“) Pt,* = (P” fl dom r)to # @ (1.2) 

(‘trh = (&I, ho) E d omr)(VzErh) Tt,(z, h) II T, 

Properties P,, and P,. had not been mentioned earlier, however, they often 
obtain in the dynamics of regulatable systems. Property P,, , closely connected with 
the property of a differential regulatable system, cannot be expanded to an oscillatory 

one [Xl]. The meaning of property P,. is the following. For any initial data h = 

(to, h& to E T”, htp E J’,b, and for any processes with these initial data: 1) x (t, 
h) E Pz for all t E TtO ; 2) an interval A = it-, r) C T,,, from the set a (to) 

of intervals exists such that z (t, h) E Pf’ for all t E A . The sets P, Pf, P” and 
a (to) are considered to be specified a p r i o r i. In contrast to P,, , in property 
P so the set aN (to) of nonintersecting intervals of “length” not less (or not greater) 

than p s located to the right of point 1, , is assumed to exist; and 5 (t, h) E Pfl 
forany AEaV(to) andforall t=A. III real situations Pt is the set of possible 

states of the system, while Pf’ is the set of its required states when some additional 

constraints on accuracy, transient performance, etc. are fulfilled. 

Obviously, Pp + Pp. On the other hand, property PI. is equivalent to the 

property 

Pp’ z {WIWZ 5 (t, h) E PI’} 

P’, t fz Tto 1 (L&4 

P’ n Plf, t~( IJ A) 
4ENb) 

called the PIP0 and is estimate on T [S] of process system S . Each of the 

properties Pia (i = 1, 2, 3) reduces, under special assumptions on T, T”, P, P”, 

Pf, a (to), all (to) 8 to one of the following specialized forms of stability: (A, h, 

to, T) , viz., Chetaev stability [l], practical stability [3], (total) practical stability 
and its uniform analog relative to time-varying sets, stochastic practical stability [12]. 
In addition, properties PI- and Pzo reduce to practical stability with prescribed 

settling time [6], while P 3o reduces to terminal and semiterminal stability [7] and 

their uniform analogs, as well as to quasicontractive and contractive stability relative 
to time-variable sets [4]. The proof of this proposition i n t o t o is cumbersome; 

therefore, let us restrict ourselves, say, to establishing the fact that practical stability 
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[3] ensues from PI0 _ 
Let as1 = [o, i-co), Q be a region in fin, Q” C 0, c* C i? [A’, x 

Q, IT), i.e., c* is some set from the class of n-dimensional functions continu- 
ous and defined on R,l x Q . Let us consider a family of ordinary differential 
equations 

5’ = f (G z) + R (4 @, x (4,) = 50 E Q”, R E C*, (1.3) 

f~CD?o’t x Qt R”1 

We assume that (‘dz, E 0”‘) (7J’t, > 0) (VR E C*) each classical SOlUtiOn zn ( -, 
to, x0) of the Cauchy problem for (1.3) with +n (to, to, x0) =a!,, is continuable 

to the right onto the interval [to, +oo). System (1.3) possesses practical stability 
in the sense of [3] if 

(V&I E To) (‘d&r E 0”) (v& EZ c”) f VZR ( * , to, go)) (1.4) 

(vt E Ito, + m))xR (f, to, go) E Q 

We take T = T” = RO1, X1 = X = Q, Ht, = Q” x C*; we specify the process 

system S as the set of all classical solutions %r (‘7 to, So) (to 62 T”, 50 CC Q”) 
of problem (1.3) with R C% C*. Then dom r = T” x Ht.; (ifh = (to, x0, R ) 
E dom r) rh = (XR (-, to, zO)}, i.e., rh is the set of all classical solutions 

of Eq. (l.3) with specified to, zo, R; (VIZ E dom r) (Vr E rh) T,, (2, h) = 
[to,+ 00) . We set 

Pt," = Ht,, Pff = Pt = Q, a (to) = {A}, A = ito, + 00)~ 
P* = dom r 

The formula of property Pp takes the form 

(VJh = (to, x0, R) E T” x Q” x C*) (ffnz (*, to, d E 
rh) (Yt E [to, i- ml) 

2~ (t, to, ~0) ES Q 

coinciding with (1.4). Q, E. JJ The other implications described in the proposition 

are proved analogously. 
01 the basis of the comparison principle [9,10] we obtaincomparison theorems for 

the composite dynamic properties Pi0 . For the process system 8 under assump- 

tions (1.2) let there exist comparison systems S,a and vector-valued comparison 

functions va = (P, z!F, U()l@+, Uos a) (CL = 1, 2) [lo] and let the conditions 

(VtL E Ty) P;: = (Py fl dam rc%pc # 0 (1.5) 

(~h.,~ = (t& h&) E dom rea) (VzCa E rCShCQ) T& (zea, hCa) = T$+ 

be fulfilled. Here toea, hf,“, hca, . . . , and TCoa, pCoa, pt, *a, . . . are, 
respectively, variables and constants by which the comparison system SCa is 

described. Since the dynamic properties Pi* (i = 1, 2, 3,) contain twoconcluding 
formulas RI and R, , two comparison systems sCu and two vector-valued com- 
parison functions TPJ (a = 1, 2) are used [lo], in general, for obtaining the 
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comparison theorems. As a rule, we take (+) 1 S,l = SC2 and v1 = v2. For 
the dynamic property Pi0 (respectively, for the primary property Ppa correspond- 
ing to the concluding formula Ra) the dynamic comparison property (respectively, 
the primary dynamic property of the comparison system Sea) is expressed by formula 
of P& (respectively, of P,.ca) obtained from Pi. (respectively, from Pie”) 
by attaching a subscript c and a superscript a to all the symbols occurring in it. 

The following comparison lemmas for the dynamic properties Pi0 (i = 1, 2, 3) 
are derived from the comparison principle [lo] (the symbol k denotes deducibility 
in the present theory): 

(1.6) 

(Aa) 3 {(VIZ = (to, ht,) E dam r) (1.7) 

hca = (CL hi’&) = (GP (to), ~02~ (h)) E dam rca) 

(Ba) E {(Vh = (to, h,) E H*a) (Vs E rh) (3scu E rcahca) (Vt E T,a) (I. 8) 

va(t, z(t, h), h),< GU(@@), vol”(~o)~ voa”(y)I 

T,a 5 Tt, f-I (w”)-’ (T;aJ 

H,u~_{h~domr:(Va:~rh)(Vt~T,)(t, z(t, h), h)~domzfXJ (1.9) 

Ba z {( Vtoca = vola (to)) /j ( Vhtac = Vez” (h)) A (IP = fl (t)) /‘j (1.10) 

(1 Ra /j Rat + Va (tt 2 (t, h), h Q xca (tc”, hca))I 

Ciol = WI (Vt E TtJ (3It,,’ E T,ol) (3&c E P&) 

(Vz,f E r,lhcl) (3&l E T;$,), Cp2 = C”CP+~ 

Ca = WI (3t,c2 E T,0’) (3h:ca E P;;) (Vs,2 E r?hc2) 

c10+2 = (VA E a (to)) (Vt E A) (3Ac2 E ac2 (toe2)) (3k2 e Ac2) 
C20+2 = (VAc” E ace (tot”)) (3A E a (to)) (Vt E A) (3tc2 E Ac2) 
Cp+2 = (Vqc (b”)) (3‘ap (to)) (VA E up (to)) 

(Vt E A) (3A,z E azc (toc2)) (3b2 E AC”) 

To obtain comparison theorems from ( 1.6) we use the following procedure [lo]. Let 

C:$X,l G {( Vt E T,l f-j prI dom v’) ( VTS E Q” \ P’) (1.11) 

(V&Z E PY(‘)) vl (t , z, h) Q &I} 

c;$X,~ - {Vr E T2 n (,,U,, ,A) f7 prl dam us) 

(VX E Q”’ \ Pff) (V&s E P+(1)) us (t, 5,‘h)QX,s), i = 1, 2 

c~J,* = {(Vt E T,% f’ tAE.Jf) A) fl PQ dom v”) 
p 0 

*) Anapol’skii, L. In. and Matrosov, V. M., Comparison method in system 

dynamics and in abstract control theory. Repts. Abstracts Fifth Kazakhstan Interinst. 

Conf. Math. and Mech., 1974. Alma-Ata, 1974. 
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Here (Vt E 7’) QaL c_ pr, dom va, 0”’ is the set containing the values of all 
processes z ( * , t,, h,,) at instant t for hf, E Pt,* fl pr, dom Uos, while 
prs dom ZF is the projection of set dom Ua onto the fl -axis (p = 1 ,2,3). 
According to the algorithm for obtaining the comparison theorems [lo] the conditions 
occurring in the comparison theorems for the dynamic properties Pi0 are, with due 
regard to (1. ll), written as follows: 

($0 (k” = vop (to)) z?z {Ulua (T”) G T,o”} (a = 1, 2) (1.12) 
c”,i. <qzc = uo2 a (h)) = {(VJtO E To) U0sa(t07 Pfo*) C_ P:OqattjcJ (1.13) 

G (kl = WL (r)) = c(Vto E T”) w1 (T,,) G &(t,)e} (1.14) 
&o (tc2 = w2 (t)) ES {(Vto E 5”“) (VA E a (to)) 

(3Ac2 E ac2 (~01~ (to))) w2 (A) c Ac2} 
C&. (t,2 = w2 (t)) - {( Vto E T”) (VA,2 E ac2 (u,n2 (to))) 
(3A E a (4,)) w2 (A) c AC”} 
cw2 (tc” = w2 (9) = {(V&l E T”) (V%c2 (hJ12 (GJ)) (3% (G) 
(VA E a, (to)) (Vt E A> (3Ac2 E apc2 (~12 (&J)) (3t,z E A,“) 
tc2 = w2 (t)} 

c:*px,1 f {wlc~ox*l} 

C&OX,” s {W2C$~X*2}, i = I,2 

C&X,* zz {W2 (Vt E T*2 f-j prl dom v”) 

(VXE Q"' \ P/)( Vxcc,” E P;;cm)(f))u2(t, 5, h)Qx:} 
Wa = (Vto E T') (Vh& Pt,* n pr3 dom ua) 

Thus, the following theorem holds for the dynamic properties Pi0 . 

C o m p a r i s o n T h e o r e m 1. Let comparison systems 
valued comparison functions I/‘” = (v”, wa, Vsra, u02a) (a = 1, 

(1.15) 

Sea and vector- 
2)) satisfying 

conditions (1.5), exist for the process system s under assumptions (1.2). Then 

&, [G$o <hLac = UOza (h)) /\ Cz” (tc” = w”(t)) A CZ*:*i"X*a] b Pi"e+ Pi0 

where the formulas mentioned are specified by relations (1.13) - (1.15). 
Note that under the condition uOla : T” + T,“a (a = 1, 2) formula (1.12) is 

generally valid; therefore, the condition CtLioa ( tOea = uola (t,)) does not appear 
in the theorem’s statement. 

Notes. 1’. Condition (1.13) signifies thdt at any initial instant to E 2’” the 
image of some fixed set ptO* from the initial data space N,. under the mapping 

a 00s is contained in the fixed set @ 
V0I”UO) c 

of the initial data space of the compar- 

ison system &,a . 
2’. Relations (1.14) signify the imbeddability under mapping wa of certain 

time intervals TtO, A,. . . . of process system S into the corresponding time intervals 

TTacT Acal. . . of comparison system sea . 0 

3’. The first (respectively, the second and third) requirement assumes that for 
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any initial data from the set PtO* n pr, dom u1 (respectively, 
and for certain t > to the function ~1 (respectively, 

P,@* n pr, dam Vz) 
v2 ) cannot be majorized 

from above in the sense of a partial order from 
elements of set P:w’(t) (respectively, 

x:“-“(‘) (respectively, xEW*(‘j) by 

Q1’ \ Pt (respectively, Q~‘\P#). 
A;:‘) when z is chosen from the set 

The comparison theorem obtained is a general one and, under special assumptions 
on the process systems S and S,” and on the vector-valued functions Va., from 
it follow comparison theorems for differential and difference equations, for dynamic 
and dispersible systems, etc. Further, this theorem can be made more specific for the 
case when the process systems S and Sea are sets of solutions of ordinary differen- 
tial equations. 

2. Application to differential equations. Let E be 
a real Banach space T E (0, 7) be an interval of time t, T c R,’ = [O 
-I- oo), T” c T, G Z T X E, pr, G = T, F be the set of fu&ions z:G & L, 
where L is some metric space. For each function z E F we can examine an 
ordinary differential equation in E 

5’ = f (r, 2, 2 (t, 4) (2.1) 

Here the operator f : G x L -+ E satisfies in its own domain the conditions of the 
existence theorem for solutions in the Carathiodory sense (C -solutions), i. e., for -- 
my h = (to, q,, z) E ilo = G’ X F (G” c T X pr,G , pr,C is the closure 
of pr,Li in E) the C -solution 2 ( *, h) of the Cauchy problem for Eq. (2.1) 
exists, defined on the interval [to, cc). We take the system of C -solutions of the 

Cauchy problem for Eq. (2.1) as a process system S by assuming (vv’t E T) X’ = 
E, (Vto E T”) Ht, = Gtoo x F, dom r = 52”; here (vih = (to, 50, Z) E W) 
rh = {X (-, h)) is th e set of C -solutions of Eq. (2.1) with initial data h , such 
that 

(VX (., h) E rh) x (to, to, x0, z) = xo /‘\ Tt, (5, h) = [to, 4 

(r, 
Let the continuous function P : T x pr,G x F --t Rka, (t, z, z) *; P 

5, 2) (a = 1, 2 and a componentwise partial ordering is introduced in R ) be 
such that (V/z. E W) (Vz (e, h) E rh) the function VCL (a, x (-, h), z) of 
the variable t is absolutely upper-semicontinuous in the sense of [13] on any interval 

[@,,I C [to, a) and 

D+vQ(t, CC, Z) ‘52 iuf s-l [ua (t + s, 5 + sf (t, 5, 2 (t, X)), 2) - (2.2) 

va (t, 5, z)] < g”(t, va (t, z, 2)) a = 17 2) 
for any x and z and for almost all t such that (t, x, Z) E Gr” X F . Here 
CIa c G, pr, Gra = T, (Vt E T) G,“’ + 0; - the measurable function g? T 
X Aa -+ R ‘a (Aa is a region in Rka, containing the set of values being examined 

of function 79 ) satisfies in T X Aa the condition in ~141 on the variable Va , 

1-e. , g,a (t, ~+a) < g,a (t, vsa) when via < vs”, uI,a = usa, for almost au 
TV T andforany s = 1,. . ., Ica, while in any compact set BQ c T x Aa 

the function g* is measurable in t and is bounded in norm by a summable function 

cpna (t): 
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.! cp,:qt)dt < + 00 9 T,, = prlRac T 

TfJa 

Here measure, measurability and integral are to be understood in the Lebesgue sense. 

On the basis of (2.2) we can form an auxiliary system of ordinary differential equations 
in Rka 

.~a’~ =- ga(i, ~9~) (a == 1, 2) (2.3) 

For system (2.3) we examine generalized solutions of the second kind [15], determined 
by the initial data hCa = (t,, xcoa) E T x Aa. These solutions are assumed to 
exist for any h,a E T x Au on the interval T,, = [to, z). From Theorem 1 
on a differential inequality in [14] we have 

(V’h E B’ n (Gla x F)) (V’x ( - , h) E rh ) (Vt E T,a) (2.4) 

va (t, Z (6 h), 2) < q*a (t, &a) 

Here &*a ( *, hCa) is the upper solution of Eqs. (2.3), passing through the initial 
a point hCa = (to, 5,, = vcb (h)) (the existence of upper generalized solutions of 

the second kind of Eqs. (2.3) is ensured [14] by the above- mentioned conditions for 
function g”), and T, a is the subset of T, during which f (*, h), having started 
in Q” n (GIG x F), remains &a. We introduce the vector-valued function Va= 
(fl, @, vola, vo2a) (a = 1, 2), whose component P has been defined above, 
wa = uOla = 1, while function vo2 a is specified by the relation 

(Vh E Q”) noza (W = fl W (2.5) 

Let H,a = !J’ (see (1.9)). we define the process system SCa as the set of 
generalized solutions of the second kind of Eqs. (2.3) with initial data hCa E T x 
Aa. Estimation of (2.4) shows that conditions ( 1.7) and (1.8) are fulfilled; 
consequently, the process system SC” and the vector-valued function Va = (u”, 1, 
1, fl) are the comparison system and the vector-valued comparison function for 

the process system 6’. In addition, we take (see (1.2) and (1.5)) 

PCT x E, (VtcT)P’f-l Gllf#jZJ, P,cT x E, (2.6) 
(Vt ciz T) P,’ 0 Glzf + 0 

P”cT” x E x F, (Vto~T“)przP”c_G~f”, P* = P”n L-2” 

(Vto E T”) Pt,* # 0, (vto E T”)(%,,E P,,*) (Vz( ., h)) 

Tt,b h) = [to, .t) 

P,] c T x Rkl, Rfc2 C T x Rkr, P,” C 1’” x Rka 

(VtoET”)Pclfq= Pzn Aa#(21 

(%c E P::) (Vxc” (-7 ha)) T& @cat ha) = [tot z) 

Here P, Pf, P”, P,1, Pfc2 and Pea are certain fixed sets in the appropriate 

spaces. We set 

(Vto E To) a (to) = aca (to), UP (to) = alrca (4,) (2.7) 
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COnditiOnS (1.13) and (1.15), with due regard to (2.5)- (2.7) take the form (by 
virtue of (2.6) and (2.7) conditions (1.14) ‘are fulfilled trivially) 

c$P (Lx&4 = VQ (h)) ES {vt, E T”) (VA& = (2.8) 

(% 4 E pro*> va (to, h,,) E P,‘,o) 

Compariso< Theorem 2. Let the above-mentioned assumptions con- 
cerning differential systems (2.1) and (2.3) and functions P (a = 1, 2), as well as 

conditions (2.6) and (2.7). be satisfied. Then 

Here formulas C$ (xka = Va (h)) and C&. X,a are specified, respectively, 
by relations (2.8) and (2.9). Similar results can be obtained for functional and differ- 
ence equations in E. Comparison Theorem 2 follows from Theorem 1. 

Sometimes in applications we can find the general solution of comparison system 
(2.3) or obtain sufficiently accurate estimates for it. m this case the hypotheses of 
Comparison Theorem 2 are made more precise. For the formulas C$ X,a we 
take, instead of (1. ll), the following expressions containing the upper solutions 
z*,( -, hca) of comparison system (2.3) ( TiO* C [to, T) i = 1, 2, 3): 

C$X,l s {(W E [to, z)) (Viz E cl” \PQ (2.10) 

(V&r = z&*1(& to, d(&l, 50, 2)) E P,lt) vl(t, z, 2)~~,1~ {i = 1, 293) 

C~.aX*” 3 {(vt E T*.*) (Vz E G,zf \ Pf’) (Vz2 = 

a$” (t, tov2 (to, q, 2)) E Pf,2’) v2 (t, 5, 2) Q xc21 (i = 1,2) 
C$X*2 EG {( vt E Tp*) (Vs E w \ Pi) 

(Vx2 = xi” (t, to, v2 (to, x0, 2)) E Pf,z’) (u” (t, 59 2) Q xc21 

On the basis of the procedure for deriving the comparison theorems [lo], instead of 
conditions (2.9) we obtain 

c& x*a z {( Vt, E To) (Vz E F) CiI$X*“I 

where the Cz X,a are presented by expressions (2.10). 

From Theorem 1 in [14] on a differential inequality for generalized solutions Of 

the second kind of system (2.3) we have 
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Consequently, if a vector Ma (t,) E Aa exists satisfying the condition 

(Vh = (t,, h,,) E (9” n (Giffi x F))) fl (h) 6 Mu (t,) (2.11) 

then the upper solution z,*~ (- , t,, Ma (t,)) of comparison system (2.3) will 
majorize all other solutions with initial data zFO = fl (h), h E a” n G,a x F. 
We note that if 

M,a (to) = sup u” (r,n ht,) ht, E W= 13 (Ga x F))to 

exists, than we can set Ma (t,) = M,a (to). 
Let vectors ma (t) E Rka exist such that 

(Vt E 2”) (V?a: E G,l’ \ P’) (Vz E F) u1 (t, 5, z) > ml (t) (2.12) 
(Vt E T) (Vs E C12t \ Pf’) (Vz E F) u2 (t, 5, z) > m2 (t) 

If 
me1 (t) = in4 ur (t, z, z), z E (?,I’ E Pt, z E F 

me2 (t) = inf u2 (t, 5, z), z E ci2’ E P,(, z E F 

exist, then for the accuracy of the estimates it is appropriate to take ma (t) = m,a(t). 
The sets P,l, Pfr:2, Pcoa ( a = i, 2) are defined as follows: 

(Vt, E T”) P$ = fl (to, pt.*) (2.13) 
(Vt, E 7’“) (Vt E [to, 7)) P,;l’= {ql~ Rk* : z~~<x,*~ (t, t,, M’(t,))} 

(Vto E T”) (vt E [to, 7)) P/= {2$ERk* : 5,2<5,*2 (t, t, MyhJ)} 

Then the dynamic comparison properties Pioc and condition (2.8)are filfilled. With 
due regard to (2.10) - (2.12), analogously to [lo] we obtain from (1.6) the following 
test for the existence of properties Pi0 in system (2.1). 

Theorem 3. Let the assumptions relating to differential systems (2.1) and 
(2.3) and to functions Vtc and the conditions [ 2.i6), (2.Q (2.13) be satisfied and 
let vectors Ma (t,) E Aa and ma (t) E R a exist, for which relations (2.11) 
and (2.12) are valid. If 

(V&l E T”) (Vr E [to, r>> ml (t) < 57 (t, to, Ml (to)) (2.14) 

(V~O E To) (Vt E ( && ,A) m2 (0 < zr* (t, to, M2 (to)) 
0 

then dynamic property Pi0 holds in system (2.1). If the first condition in (2.14) and 

(Vt, E 7’“) (3A E a (to)) (Vt E A), m2 (0 < xc*’ (6 to, M2 (to)) (2.15) 

are fulfilled, then property P,o holds in system (2.1). If the first condition in (2.14) 

are fulfilled, then property P,. is valid for system (2.1). 
The simplest sufficient conditions for properties PI0 to exist in system (2.1) are 

obtained from Theorem 3 when g” is independent of zca, since in this case the 
generalized solutions of (2.3) coincide with the classical solutions and are determined 

by quadrature 
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Consequently, the following is valid: 

C o I o 1 1 a r y 1. let the assumptions relative to differential systems (2.1) and 
(2.3) and to functions Va with gc (t, zca) = $” (t) and the conditions (2.6), (2.7). 

(2.13) be fulfilled and let vectors Ma (ts) E Aa and ma (t) E RLa exist, for 
which relations (2.11) and (2.12) are fulfilled. If 

wto E T”) (vt E [to, z)) d (t) Q Ml Vo) + s g1 (s) ds 
to 

t 

(Vto E To) (Vt E t ,& ,A)) m2 (t> 4z AP (to) + [ g2 ts) ds 
0 to 

then property PI0 holds in system (2.1). If the first condition in (2.17) and 

(2.17) 

(vto E To) (3A E a (to)) (Vt E A) m2 (t) Q M2 (to) + l g2 (s) ds (2.18) 
to 

are fulfilled, then property P20 is fulfilled for system (2.1). If the first condition 
in (2.17) and 

tvto E To) (3% (to)) (vt E t_iJ, ) A)) m2 (t) < M2 (to) + j g2 (s) ds 
I* o t. 

are fulfilled, then property Pa0 is valid for system (2.1). 
On the basis of the propositions in Sect. 1 analogous theorems for properties re- 

ducible from the properties Pi. we have examined, covering the well-known results 

in [S], follow directly from Theorems 2 and 3. Thus, for example, the following 
statement is obtained from Theorem 3 for the process systems S and Sea being 

studied with d (t, z, z) z u2 (t, z, z), gi (t, zcc,‘) f g2 (t, a”) and for property 
PI. with P = P,, a (to) = {A}, A = [to, T) , which in this case reduces to 

uniform total stability relative to time -varying sets [S]. 

C o r o 1 1 a r y 2. Let the assumptions relative to differential systems (2.1) and 

(2.3) and to functions Va and the conditions (2.6), (2.7), (2.13) and 

M’ (to) = {SUP vi1 Vo, ho), 6 * -, SUP u/c11 (to, h)) E A1 

ho E (QO n (G1 x F))to 
rd (t) = {inf VI1 (t, 2, z),. . . inf ulrll (t, 2, 2)) E Ilki 

x E G,lt \ P’, z E F 

be fulfilled. 

If (vt, E T”) (Vt E [to, z)) ml (t) Q z,*l (t, to, Ml (to)), then uniform 
total stability relative to time-varying s&s obtains in system (2.1). 

E x a m p 1 e. Let the vector-valued functions va: T X Rn - R ka t whose 

components are nonnegative quadratic forms, i. e. , 
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u,a (1, x) == 2-w (1) x, i = 1,. , ., ii, 

exist for system (2.1) with _& = H* Here Bia (t) is an nXn -matrix differenti- 
able with respect to t . Let the product with respect to time of each quadratic form 

Via relative to system (2.1) admit of the estimate 

Vq(t, 2) < 2 g~v”,(t, x); i-f; i, Ba$j= COnst),O 
+1 

Comparison system (2.3) is now represented by the equation 

ac cI. = Gaze=, Ga = (gila) (a = 1, 2) 

whose solution, passing through point zCQa at instant t > 0, has the form 

%,a 0, t0, +,“I = exp (dl (t - to)) zeoa 
Let the sets 

be specified. Here n (t), fi (t), y (t) are continuous time functions such that (Vt E 

R,'): q (4 p (t), Y (t) > 0 and rl (Q > Y (Q. Then the vectors Ma (to) and 

73~~ (1) (see (2.11) and (2.12)) are defined as follows: 

Ma (to) = Aa (to) y (to), m1 (t) = h1 (1) 9 (I), m2 (t! = h2 (8) p (t) 
na (to) = [A”, (to), . f ., A~a(~o)~*, lia (t) = tk,a (t), * . , ?ga (tf 

Here Ai” (t) and hla (t) are, respectively, the largest and the smallest eigenvalues 

of matrix Bia (t). If 2’ = 2’” = Ho1 and the conditions 

(V(t - to) Z 0) A’ (t) 17 (t) Q exp W (t - to)1 A’ (h) Y (toI 

exp [GB (11 to)1 A2 (te) Y (to) 

are fulfilled, then system (2.1) possesses property P,,. 
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